

Intercomparison of absorption photometer Project No.: AP-2018-3-4

Basic informations:

Location of the quality assurance: TROPOS, Lab 121

Date: 22 October - 26 October 2018

Principal Investi-	Home Institution	Participant	Instrument
gator			
K. Jeongeun	Korea National	H. Jeeyoung	1007:1004
	Institute of Mete-		
	orological Science		

1 Intercomparison summary

Status on arrival

No issues due to transportation or other damages.

Flow calibration

The flow meter of the instrument is set to report flow for conditions of $20\,^{\circ}\text{C}$ and $1013.25\,\text{hPa}$. The flow was $1.3\,\%$ too high compared to reference flow meter (TSI 4100). Corrections for the flow deviation and the temperature and pressure (STP correction) were considered in the data evaluation.

Noise

The noise level of the instrument is out of the normal range. The average noise (1σ) for the all wavelengths was less equal $67 \,\mathrm{ng}\,\mathrm{m}^{-3}$ for two minute averaging time. The background level was acceptable with deviations of less equal $15 \,\mathrm{ng}\,\mathrm{m}^{-3}$ for all wavelengths.

Inspection

The measuring cell was slightly contaminated with dust and was cleaned.

Comparison to reference MAAP

BC concentrations at 880 nm (BC6) of AE31 are $14.8\,\%$ lower than BC concentrations from a reference MAAP.

Comparison to reference AE33

The deviations of BC concentrations relative to the reference AE33 are in the range of -21.0 to -14.6 %.

Comparison to reference absorption

The deviations of the absorption coefficients derived from AE31 relative to the absorption coefficients from the multi-wavelength absorption reference setup are in the range of -35.8 to -15.5%.

Recommendations

No recommendations.

Overall assessment

The instrument meets the requirements.

2 Details

Configuration parameters

Flow check

Table 1: Correction factors F_{flow} and F_{STP} for correcting eBC concentrations. F_{flow} corrects for inlet flow errors considering leakage. F_{STP} is used to adjust concentrations to STP conditions (0 °C, 1013.25 hPa).

System	flow and	reference	Measured	F_{flow}	F_{STP}
Q_{AE42}	$T_{0,AE42}$	$p_{0,AE42}$	flow Q		
[slpm]	$[^{\circ}C]$	[hPa]	[slpm]		
3	20	1013.25	3.05	0.987	1.073

Spot size check

Table 2: Correction factor for spot sizes F_{spot} .

Nominal spot size [cm ²]	Measured spot size $[cm^2]$	F_{spot}
-	Well defined spot, spot size not measured	1.0

Instrumental Noise

Table 3: Noise parameters of AE33 (1007:1004) measured with filtered air.

Wavelength [nm]	Number of data points	$\begin{array}{c} {\rm Median} \\ {\rm [ngm^{-3}]} \end{array}$	$\begin{array}{c} 10 th \\ percentile \\ [ng m^{-3}] \end{array}$	90th percentile $[\text{ng m}^{-3}]$	$\begin{array}{c} \text{Mean} \\ [\text{ng m}^{-3}] \end{array}$	Std. dev. $[ng m^{-3}]$	Error of mean $[ng m^{-3}]$
370	238	2	-36	33	0	27	2
470	238	-5	-50	48	-2	36	2
520	238	0	-70	57	-3	51	3
590	238	-1	-65	56	-4	49	3
660	238	-15	-79	67	-11	58	4
880	238	-10	-85	77	-7	65	4
950	238	-9	-100	75	-12	67	4

Comparison to reference MAAP

Table 4: Correlation parameter of eBC coefficient (BC6) from AE33 (1007:1004) and reference MAAP.

Wavelength [nm]	Slope	Error	R^2
880	0.852	0.009	0.942

Figure 1: Correlation of eBC coefficient (BC6) from AE33 (1007:1004) and reference MAAP.

Comparison to reference AE33

Table 5: Correlation parameter of eBC coefficients from AE33 (1007:1004) and reference AE33.

TT7 1 (1	CI	Б	D?
Wavelength	Slope	Error	R^2
[nm]			
370	0.79	0.003	0.989
470	0.79	0.004	0.987
520	0.801	0.006	0.972
590	0.844	0.005	0.983
660	0.835	0.006	0.968
880	0.854	0.007	0.959
950	0.8	0.006	0.963

Figure 2: Correlation of eBC coefficient (BC6) from AE33 (1007:1004) and reference AE33.

Comparison to multi-wavelength absorption

Table 6: Correlation parameter of absorption from AE33 (1007:1004) and the multi-wavelength absorption reference.

Wavelength [nm]	Slope	Error	R^2
470	0.642	0.006	0.944
520	0.757	0.011	0.893
660	0.845	0.027	0.628

Figure 3: Correlation of absorption from AE33 (1007:1004) and the multi-wavelength absorption reference at $660\,\mathrm{nm}$.