

Intercomparison of absorption photometer Project No.: AP-2020-2-2

Basic informations:Location of the quality assurance:TROPOS, Lab 121Date:29 June - 03 July 2020

Principal Investi-	Home Institution	Participant	Instrument
gator			
J. S. Henzing	TNO	M. Moerman	167

1 Intercomparison summary

Status on arrival

The filter tape was loose in the device. Apart from that, there were no further issues due to transportation or other damages.

Flow calibration

The flow meter of the instrument is set to report flow for conditions of 0 $^{\circ}$ C and 1013.25 hPa. The flow was 23.0 % too low compared to reference flow meter (TSI 4100). Corrections for the flow deviation and the temperature and pressure (STP correction) were considered in the data evaluation.

Noise

The noise level of the instrument is in the normal range. The average noise (1σ) was less eqal $43 \,\mathrm{ng}\,\mathrm{m}^{-3}$ for one minute averaging time. The background level was acceptable

with deviations of less equal 0 ng m^{-3} .

Inspection

The measuring cell was heavily contaminated with a dark, sticky substance. The cell was cleaned. The flow was recalibrated.

Comparison to reference MAAP

BC concentrations of MAAP are $9.3\,\%$ higher than BC concentrations from a reference MAAP.

Comparison to reference absorption

The deviations of the absorption coefficients derived from MAAP relative to the absorption coefficients from the multi-wavelength absorption reference setup is 8.0%.

Recommendations

No recommendations.

Overall assessment

The instrument meets the requirements.

2 Details

Configuration parameters

```
THERMO SCIENTIFIC MAAP v1.32
                                                                    SERIAL NUMBER 167
                                                                                                        20 - 06 - 30
                                       6.6 m2/g
500
1 min
SIGMA BC:
AIR FLOW:
STORE AVERAGES:
VOLUME REFERENCE OPERATING CONDITIONS
STANDARD TEMPERATURE 0 _C
FILTER CHANGE
TRANSM. <
                           %
                                         30
CYCLE
HOUR:
                           h
                                        100
                                         ^{24}
CALIBRATION OF SENS.
 \begin{array}{ccc} T1 & T2 & T3 \\ -15 & 8 & -47 \end{array}
                                      {}^{{\rm T4}}_{{\rm 62}} \, {}^{{\rm P1}}_{-218}_{{\rm 95.1}}
                                                         P2 P3 -9 -174
AIR FLOW
HEATER PARAMETERS
Diff. T2-T1 nominal
Max. Heating Temp.
Min. Heating Power
                                        \begin{array}{c} 0 \ \_C \\ 45 \ \_C \\ 10 \ \% \end{array}
ANALOG OUTPUTS
OUTPUTZERO:CBC0MBC02400
                                    4mA
GESYTEC-PROTOKOL
STATUS VERSION STANDARD
NUMBER OF VARIABLES 1
CBC
END
```

Flow check

Table 1: Correction factors F_{flow} and F_{STP} for correcting eBC concentrations. F_{flow} corrects for inlet flow errors considering leakage. F_{STP} is used to adjust concentrations to STP conditions (0 °C, 1013.25 hPa).

System flow and reference			Measured	F_{flow}	F_{STP}
Q_{MAAP}	$T_{0,MAAP}$	$p_{0,MAAP}$	flow Q		
[slpm]	$[^{\circ}C]$	[hPa]	[slpm]		
7.55	0	1013.25	6.612	1.23	1

Spot size check

Table 2: Correction factor for spot sizes F_{spot} .				
Nominal spot size	Measured spot size	F_{spot}		
$[\mathrm{cm}^2]$	$[\mathrm{cm}^2]$			
2.00	Well defined spot,	1.0		
	spot size not measured			

Figure 1: New spot from MAAP (167) on filter tape.

Instrumental Noise

Wavelength	Number	Median	10th	90th	Mean	Std.	Error
[nm]	of data	$[\mathrm{ng}\mathrm{m}^{-3}]$		percentile	$[\mathrm{ng}\mathrm{m}^{-3}]$		of mean
	points		$[\mathrm{ng}\mathrm{m}^{-3}]$	$[\mathrm{ng}\mathrm{m}^{-3}]$		$[\mathrm{ng}\mathrm{m}^{-3}]$	$\left[\mathrm{ng}\mathrm{m}^{-3}\right]$
660	301	0	-50	43	-2	43	3

Table 3: Noise parameters of MAAP (167) measured with filtered air.

Wavelength

Comparison to reference MAAP

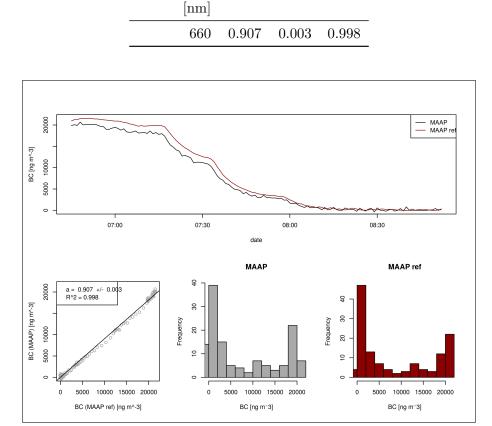


Table 4: Correlation parameter of eBC coefficients from MAAP (167) and reference MAAP.

Slope

Error

 \mathbb{R}^2

Figure 2: Correlation of eBC coefficient from MAAP (167) and reference MAAP.

Comparison to multi-wavelength absorption

Table 5: Correlation parameter of absorption from MAAP (167) and the multiwavelength absorption reference.

-	Wavelength [nm]	Slope	Error	R^2
-	637	1.08	0.004	0.999

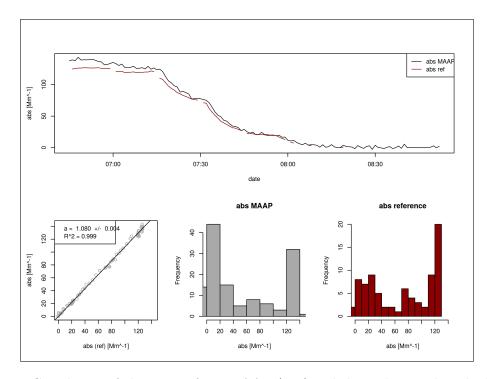


Figure 3: Correlation of absorption from MAAP (167) and the multi-wavelength absorption reference at 660 nm.