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Abstract. Although black carbon (BC) is one of the key
atmospheric particulate components driving climate change
and air quality, there is no agreement on the terminology
that considers all aspects of specific properties, definitions,
measurement methods, and related uncertainties. As a result,
there is much ambiguity in the scientific literature of mea-
surements and numerical models that refer to BC with differ-
ent names and based on different properties of the particles,
with no clear definition of the terms. The authors present here
a recommended terminology to clarify the terms used for BC
in atmospheric research, with the goal of establishing unam-
biguous links between terms, targeted material properties and
associated measurement techniques.

1 Introduction

Within the discussion of global climate change, the interna-
tional community recognized the importance of establish-
ing inventories for sources and sinks of particulate, light-
absorbing carbon (UNEP/WMO, 2011; Bond et al., 2013).

One of the major contributors to the carbon cycle is com-
bustion of fossil fuel and biomass, with carbonaceous par-
ticulate matter being one of the most important combus-
tion by-products besides CO2. One fraction of the carbona-
ceous aerosol, commonly called black carbon (BC), is char-
acterized by its strong absorption of visible light and by
its resistance to chemical transformation (Ogren and Charl-
son, 1983; Goldberg, 1985). These distinct properties give
it relevance in various research fields related to climate
change, air chemistry, ambient air quality, biogeochemistry,
and paleoclimatology.

The BC fraction of the carbonaceous aerosol has been in-
cluded in the Strategic Plan of the Global Atmosphere Watch
program (GAW) of the World Meteorological Organization
(WMO) (Müller et al., 2007). It has also become one of
the key targets for current research on the aerosol impact
on climate and related mitigation strategies. Relative to the
long-lived greenhouse gases (particularly CO2 and CH4), the
light-absorbing carbonaceous aerosol is referred to as a short-
lived climate forcer, and its emission control policies are be-
ing contemplated as one near-term mitigation strategy for the
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climate impacts of anthropogenic emissions; see, e.g., the in-
tegrated assessment of black carbon and tropospheric ozone
by UNEP/WMO (2011).

Despite its high relevance for climate change research
(Ramanathan and Carmichael, 2008; Bond et al., 2013), there
is no agreed clear and unambiguous terminology available
for quantifying carbonaceous matter in atmospheric aerosols.
In the end, all definitions used in the scientific literature
refer to a specific property of the respective carbonaceous
fraction or to the method that is used for the measurement
(Heintzenberg and Winkler, 1991; Pöschl, 2003; Bond et al.,
2013). As there is no consensus within the community for
using a specific definition for a particular measuring tech-
nique, there are numerous publications in the scientific liter-
ature that refer to the same property but with different terms
and, vice-versa, publications referring to different properties
but with similar names. To a minor extent, the same is true
also for modeling exercises where different terms are used,
not always in relation to properties that can be derived from
direct measurements.

While data on light-absorbing carbonaceous aerosols are
collected globally by different measurement techniques,
global emission inventories and modeling studies (e.g., Bond
et al., 2007; Junker and Liousse, 2008; Vignati et al., 2010;
Granier et al., 2011; Lee et al., 2012), as well as scientific as-
sessments (Solomon et al., 2007; Bond et al., 2013), require
data sets that are independent of the measurement method. It
is difficult to clearly distinguish these terminologies in atmo-
spheric chemistry and climate model applications.

In particular, BC emission inventories are mainly based
on emission factors derived from thermal-optical methods
that detect the carbon evolving from a heated filter sam-
ple, while data from atmospheric monitoring stations are
mostly derived from optical absorption methods. Conse-
quently, Vignati et al. (2010) investigated the sources of un-
certainties in modeling BC at the global scale and requested
an increased understanding of observational data and asso-
ciated uncertainties. However, the uncertainties are difficult
to establish because the reasons for the large discrepancies
between methods are often not fully understood and are to a
large extent dependent upon season and location of sampling,
and type of aerosol.

Furthermore, BC is a highly relevant topic with respect
to research on adverse health effects of airborne particulate
matter, much of which relies on air quality monitoring. An
overview of current knowledge on the impacts of the atmo-
spheric aerosol particle burden on human health is given in
the recent integrated assessment of black carbon and tropo-
spheric ozone by UNEP/WMO (2011). Since most epidemi-
ological studies correlate particulate-matter-related health ef-
fects to aerosol (including BC) mass concentrations mea-
sured by air quality monitoring networks, the recommended
terminology may also apply to this research area.

This publication proposes definitions of terms and recom-
mendations for reporting measurements of “black carbon”,

“elemental carbon”, “light absorption“, “refractory carbon”
and other properties related to this distinct fraction of the
carbonaceous aerosol. We start with a formal definition of
black carbon and elemental carbon, including the constitut-
ing properties of BC. An overview of available analytical
methods will prepare the ground for a synopsis of historical
and current operational definitions. Finally, the terminology
recommended for future use is presented based on targeted
particle properties. It will link considered properties to asso-
ciated analytical methods in an unambiguous manner. These
recommendations are a result of discussions carried out in
the context of the Scientific Advisory Group for Aerosols of
the WMO/GAW program. However, the authors express their
own views and do not act on behalf of, or commit, their in-
stitutions, ministries or WMO.

2 Definition of black carbon

From a formal standpoint and without referring to measure-
ment methods or formation processes, the technical term
“black” describes ideally a completely light-absorbing ob-
ject with reflectivity of zero, an absorptivity of unity and an
emissivity of unity, although an object with an absorptivity
close to unity would still be considered “black” (Schwartz
and Lewis, 2012). The term “carbon” refers to the sixth ele-
ment of the periodic system while “elemental carbon” is used
to denote carbon that is not bonded to other elements. Com-
bining these formal views provides a strict definition of the
terms “black carbon” and “elemental carbon”:

– Black carbon (BC) is formally defined as an ideally
light-absorbing substance composed of carbon. The for-
mation process is excluded from this definition because
of the variety of potential processes. While BC is mostly
formed in incomplete combustion of carbonaceous mat-
ter, it can also be a product of pyrolysis of carbona-
ceous matter, i.e., the change of the chemical struc-
ture of carbonaceous compounds from loss of hydro-
gen and/or oxygen atoms at temperatures above ap-
proximately 250◦C (Chow et al., 2004), of dehydration
of sugar, or of heating of wood under an oxygen-free
atmosphere (Schwartz and Lewis, 2012). This funda-
mental definition of BC agrees with the operationally
based definition by Moosm̈uller et al. (2009), who de-
fined BC as “carbonaceous material with a deep black
appearance, which is caused by a significant, nonzero
imaginary part. . . of the refractive index that is wave-
length independent over the visible and near-visible
spectral regions”.

– Elemental carbon (EC) is formally defined as a “sub-
stance containing only carbon, carbon that is not bound
to other elements, but which may be present in one
or more of multiple allotropic forms” (Schwartz and

Atmos. Chem. Phys., 13, 8365–8379, 2013 www.atmos-chem-phys.net/13/8365/2013/



A. Petzold et al.: Recommendations for reporting “black carbon” measurements 8367

Lewis, 2012). Examples of elemental carbon are dia-
mond, carbon nanotubes, graphite or fullerenes.

Hence, the formal terms “black carbon” and “elemental
carbon” refer to a set of materials with different optical and
physical properties instead of a given material with well-
defined properties.

Unfortunately, these strict definitions are not particularly
useful in practice, because carbonaceous matter appears in
atmospheric aerosols under no circumstances as pure matter.
Instead, it occurs as a highly variable mixture of different
carbonaceous compounds with different material properties.

A more useful definition of BC takes into account the var-
ious properties of the particles that make them so relevant
to climate change, air chemistry, ambient air quality, biogeo-
chemistry, and paleoclimatology. These properties, compiled
in Table 1, control the effects of the particles, as well as their
atmospheric removal processes and hence spatial distribu-
tions. It is the combination of these properties that leads to
the classification of BC as a unique substance, but unfortu-
nately, none of the currently available measurement methods
quantifies all five of those properties simultaneously.

3 Analytical methods

The terms used to identify the various fractions of carbona-
ceous aerosol are primarily associated with the correspond-
ing measurement methods (e.g., Pöschl, 2003; Andreae and
Gelencśer, 2006; Bond and Bergstrom, 2006; Kondo et al.,
2011; Buseck et al., 2012). Commonly, the terms “black
carbon”, “soot”, “elemental carbon”, “equivalent black car-
bon” and “refractory black carbon” synonymously refer to
the most refractory and light-absorbing component of car-
bonaceous combustion particles, even though the underlying
definitions and measurement methods are different. Histori-
cal definitions and those used in the current literature will be
summarized in Sect. 4, whereas this section introduces the
families of available analytical methods.

3.1 Evolved carbon

Most common carbon-specific methods consist of combined
thermal and gas-analytical approaches based on the analysis
of gasification products evolving from a heated filter sample
(Malissa et al., 1976; Puxbaum, 1979; Gundel et al., 1981;
Novakov, 1984). These methods make use of the thermal re-
sistivity of the “elemental carbon” fraction of carbonaceous
matter, which does not volatilize in an inert atmosphere at
temperatures as high as 4000 K. It can only be gasified by
oxidation starting at temperatures above 340◦C (Cachier et
al., 1989; Jennings et al., 1994). The carbon contained in the
analyzed aerosol sample is detected as CO2 by nondispersive
infrared absorption or other CO2 specific detection methods
or as CH4 by a flame-ionization detector.

Currently, different protocols are in use, e.g., IMPROVE
(Chow et al., 1993), IMPROVEA, NIOSH (Peterson and
Richards, 2002; Chow et al., 2007a), and EUSAAR-2
(Cavalli et al., 2010). A recent review of evolved carbon
methods is given by Chow et al. (2007b). The analytical pro-
tocol, however, is an essential part of the data and must be
documented in metadata of the databases.

While evolved carbon methods agree within< 10 %
(Schmid et al., 2001) or 0.22 (±0.12) µg m−3 (ten Brink et
al., 2004) in determining the total mass of particulate car-
bonaceous material, the selectivity of separating “elemental
carbon” from the bulk of carbonaceous matter varies strongly
with the analytical protocol (Schmid et al., 2001; Cavalli et
al., 2010; Chow et al., 2011; Pio et al., 2011) and with impu-
rities that may modify the oxidation behavior of the carbona-
ceous fraction (Schmid et al., 2011).

It has also to be mentioned that a correction for pyrol-
ysis or charring, respectively, of carbonaceous matter, i.e.,
for the transformation of any carbonaceous matter into EC
during the analytical process, is required depending on the
analytical technique used (Huntzicker et al., 1982; Chow
et al., 1993, 2004; Petzold and Niessner, 1995; Boparai et
al., 2008). Pyrolysis correction is performed by measuring
filter transmission or reflectance during the thermal-optical
analysis step. Yet the correction differs significantly between
transmission measurement (TOT, thermal-optical transmis-
sion) or reflectance measurement (TOR, thermal-optical re-
flectance) and temperature protocol (Schmid et al., 2001).
The EC fraction formed by OC conversion during pyrolysis
is referred to as pyrolyzed carbon (Boparai et al., 2008).

3.2 Light absorption

The volumetric cross section for light absorption, commonly
called the light absorption coefficient (σap), is the princi-
pal measure of any optical technique for measuring light-
absorbing particles. It is typically reported with units of
m2 m−3, i.e., m−1, or Mm−1, where 1 Mm−1

= 10−6 m−1.
There is no overall agreed reference method for measurement
of the aerosol light absorption coefficient, because many of
the available methods suffer from cross-sensitivity to light-
scattering particles and other potential measurement arti-
facts. However, photoacoustic spectroscopy is a candidate
reference method for atmospheric observations and analyt-
ical applications (e.g., Petzold and Niessner, 1996; Arnott et
al., 1999, 2003; Lack et al., 2006), while the measurement of
light extinction minus light scattering may offer another pos-
sibility in the laboratory (Schnaiter et al., 2005b; Sheridan et
al., 2005) or in atmospheric plumes with very high aerosol
mass concentrations (Weiss and Hobbs, 1992). An in-depth
review of light absorption measurement methods is provided
by Moosm̈uller et al. (2009).

The conversion of the aerosol light absorption coefficient
into a light-absorbing carbon mass concentration [BC] is
based on the relationship [BC]= σap× MAC−1. It therefore
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Table 1.Properties defining black carbon and their consequences for effects and removal.

Property Characteristics Consequences

Microstructure Graphite-like structure con-
taining a large fraction of
sp2-bonded carbon atoms.

Low chemical reactivity in
the atmosphere; slow re-
moval by chemical pro-
cesses; strong optical
absorption.

Morphology Fractal-like chain ag-
gregates consisting of
small carbon spherules of
< 10 nm to approximately
50 nm in diameter; fractal
dimension ranges from
≤ 2.0 for fresh combustion
particles to∼= 3.0 for aged
aerosol; specific surface
area typically larger than
10 m2 g−1 and may exceed
100 m2 g−1.

High capacity for sorption
of other species.

Thermal stability Refractory material with
a volatilization temperature
near 4000 K; gasification is
possible only by oxidation,
which starts at temperatures
above 340◦C.

High stability in the atmo-
sphere; longer atmospheric
residence time.

Solubility Insoluble in any solvent in-
cluding water.

Slow removal by clouds
and precipitation, unless
coated with water-soluble
compounds; longer atmo-
spheric residence time.

Light absorption Strong light absorption in
the spectral range of visi-
ble light with mass-specific
absorption coefficient typi-
cally greater than 5 m2 g−1

(at λ = 550 nm) for freshly
produced particles; weak
wavelength dependence of
light absorption with ab-
sorption Ångstr̈om expo-
nent typically 1.0–1.5;
characterized by a signif-
icant, nonzero and wave-
length-independent imagi-
nary part of the refrac-
tive index over the visible
and near-visible spectral re-
gions.

Reduction of the albedo of
clouds, snow, and ice; at-
mospheric heating; surface
cooling – all of which lead
to effects on solar radiation
and climate.

requires precise knowledge of the mass-specific absorption
cross section (MAC; also referred to as mass absorption effi-
ciency, MAE) often reported in units of m2 g−1. This coeffi-
cient, however, varies significantly in time and space depend-

ing upon source emissions, transformation during transport,
etc. (Bond and Bergstrom, 2006; Chan et al., 2011).

As long as particles are fractal-like agglomerates with di-
ameters, Dps, of primary spherules falling into the Rayleigh
regime, i.e., Dps� λ, the MAC value of primary spheres is
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independent of Dps, because for fractal-like aggregates parti-
cle absorption depends on the size of the primary spherules
and not on the size of the aggregates (Berry and Percival,
1986; Petzold et al., 1997). If this condition is not met, then
the MAC of the individual particles may depend on their
sizes and the effective MAC of an aerosol composed of such
particles will depend on their size distribution.

The application of this conversion also assumes that BC is
the only light-absorbing particulate species present. Contri-
butions to absorption from noncarbonaceous light-absorbing
aerosol components like mineral dust (see, e.g., Petzold et
al., 2009, 2011), or by non-BC light-absorbing carbonaceous
matter (i.e., brown carbon; see Andreae and Gelencsér, 2006,
and next section for a definition) must be excluded or cor-
rected.

The most promising method for excluding measure-
ment artifacts by non-BC light-absorbing species is
based on the spectral dependence of light absorption
properties for different aerosol compounds, which can
be characterized by the absorption̊Angstr̈om exponent
åap= −ln(σap(λ1)/σap(λ2))/ln(λ1/λ2) for a certain wave-
length interval [λ1, λ2]. While BC is characterized by a low
value ofåap between 1.0 and approximately 1.5 (Kirchstetter
et al., 2004; Schnaiter et al., 2006; Kim et al., 2012), organic
carbon-containing aerosol may show strong light absorption
in the blue to ultraviolet spectral range (Kirchstetter et al.,
2004; Graber and Rudich, 2006; Adler et al., 2010; Chen and
Bond, 2010; Kim et al., 2012) associated withåap values as
high as 7 and beyond for the visible range. However, in a
recent paper, Lack and Langridge (2013) investigate the un-
certainties of using the method of separating BC and organic
non-BC light-absorbing species byåap values. The main con-
clusion is that unless the non-BC absorbers contribute more
than 40 % of absorption, a quantitative attribution of the var-
ious absorbers cannot be derived.

Mineral dust as another important light-absorbing aerosol
component is characterized by strong absorption in the blue
and green visible range and low absorption in the red spec-
tral range, which results in̊aap values of 3 and larger at visi-
ble wavelengths (Petzold et al., 2009). Summarizing, overde-
termination of light absorption associated with BC by non-
BC light-absorbing aerosol compounds can be minimized by
choosing a detection wavelength in the red spectral region
(600 nm< λ≤ 700 nm) where cross-sensitivities to mineral
dust and organic carbon compounds are lowest.

Furthermore, absorption enhancements by coated particles
(Schnaiter et al., 2005a; Lack et al., 2009a; Lack and Cappa,
2010) and by relative humidity effects (Arnott et al., 2003;
Lack et al., 2009b) must be considered in the interpretation
of light absorption measurements.

Another challenge for applying this conversion is the ab-
sence of an overall agreed reference material which links
light absorption to BC mass. Instead, different methods use
different reference materials; see Baumgardner et al. (2012)
for a state-of-the-art overview. From a large number of

method intercomparison studies on chemical and optical
methods in the past decade (e.g., Schmid et al., 2001; ten
Brink et al., 2004; Hitzenberger et al., 2006; Park et al., 2006;
Reisinger et al., 2008; Chow et al., 2009; Cavalli et al., 2010;
Kondo et al., 2011), we know that mass concentrations of
BC derived from chemical methods and those derived from
optical methods may differ substantially, by up to a factor
of 7, even though BC mass concentrations determined by
both types of methods are usually correlated at a statistical
significance levelP ≤ 0.05.

3.3 Laser-induced incandescence

More recent methods for measuring the mass concentration
of light-absorbing carbonaceous aerosol by means of laser
heating of light-absorbing aerosol particles and subsequent
analysis of emitted radiation (Melton, 1984) have developed
from applications in flame diagnostics to atmospheric obser-
vation. These techniques are implemented as laser-induced
incandescence of an ensemble of particles (LII) (Snelling
et al., 2005; Chan et al., 2011) or of single particles, e.g.,
the single-particle soot photometer (SP2) (Stephens et al.,
2003; Schwarz et al., 2006). Particularly the SP2 instrument
was extensively compared in studies reported by Slowik et
al. (2007), Cross et al. (2010), and Kondo et al. (2011). In
a recent development the SP2 technology of laser vaporiza-
tion was coupled to an aerosol mass spectrometer (SP-AMS)
for analyzing charged clusters of vaporized carbon particles
(Onasch et al., 2012); see further discussion in Sect. 3.5.

Laser-induced incandescence methods detect carbon-
containing particles by absorption of intense radiative en-
ergy, which is transformed into heat and results in the re-
emission of thermal radiation (Melton, 1984; Stephens et al.,
2003; Schwarz et al., 2006; Chan et al., 2011). While the
primary signal is generated by absorption of radiation, i.e.,
by an optical process, the method response is due to the
thermal emission from heated matter. Therefore, incandes-
cence methods are mass-based, but, as for absorption meth-
ods, the instrument response depends on the type of carbona-
ceous particle (Gysel et al., 2012; Laborde et al., 2012) and
the conversion of thermal radiation to carbon mass has to
be established by proper calibration. The calibration of in-
candescence instruments must be performed using reference
carbon material such as fullerene or recommendations from
Baumgardner et al. (2012).

3.4 Raman spectroscopy

Methods sensitive to the structural order of carbon atoms
in aerosol particles, such as Raman spectroscopy (Sze et
al., 2001; Sadezky et al., 2005; Potgieter-Vermaak and Van
Grieken, 2006; Ivleva et al., 2007), are well suited for unam-
biguously identifying carbonaceous particles with an inher-
ent graphite-like structure. They have shown the direct link
between the graphite-like carbon structure and strong light
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absorption properties (Rosen and Novakov, 1977). Combined
with suitable calibration methods, this relationship can be
used for the measurement of graphite-like carbon in atmo-
spheric particle samples (Mertes et al., 2004).

Whereas this method has its strengths in identifying char-
acteristics of the carbon structure, its applicability for a quan-
titative measurement of carbon mass is limited for today’s
technology. Limitations are mainly related to variations in
the parameters of the Raman spectra, i.e., bandwidths and
band intensities, for different types of carbonaceous refer-
ence materials and the carbonaceous fraction of the atmo-
spheric aerosol. Yet, the method of Raman mapping (Ivleva
et al., 2007) offers a promising approach towards a quan-
titative application of Raman spectroscopy for carbon mass
concentration measurements.

3.5 Aerosol mass spectroscopy

Aerosol mass spectrometry methods utilize single particle
laser ablation systems based on laser induced plasma or
multi-photon ionization, or laser vaporization methods under
incandescent conditions combined with heated filaments, and
subsequent mass-spectrometry techniques for analyzing the
chemical composition of individual aerosol particles. The ac-
tual measurements are ions of carbon clusters (e.g., C+, C+

2 ,
C+

3 , etc.) in the mass spectra. These methods thus target the
elemental chemical composition of the particles. Soot parti-
cle aerosol mass spectrometry (SP-AMS) (Cross et al., 2010;
Onasch et al., 2012) and aerosol time-of-flight mass spec-
trometry (ATOFMS) (Noble and Prather, 1996; Spencer and
Prather, 2006; Spencer et al., 2007) are the most advanced
representatives of this family of methods.

The SP-AMS technique represents a hybrid of laser-
induced incandescence and mass spectrometry methods be-
cause it combines a laser-induced incandescence approach
for heating and vaporizing the sampled particles with
mass spectrometry techniques for the detection of result-
ing charged carbon clusters. As a result of this combination
of techniques, SP-AMS measurements are, from the stand-
point of the detection scheme, more similar to single par-
ticle mass spectrometers (i.e., carbon cluster ion detection)
than the incandescence signal (intensity of thermal radia-
tion) measured by the SP2. However, the carbon ions mea-
sured by an SP-AMS come from carbon that is evaporat-
ing under incandescent conditions (i.e., refractory), and are
not a product of a laser-induced plasma or multi-photon ion-
ization events that may control the ions observed by sin-
gle particle laser ablation systems. Thus, it is a not yet
fully answered question whether the SP-AMS measurements
should be classified with SP2 measurements or single parti-
cle laser ablation measurements.

3.6 Electron microscopy

Particle morphology and microstructure are commonly ad-
dressed by means of electron microscopy, either in its trans-
mission (TEM) or scanning (SEM) mode (e.g., Fruhstorfer
and Niessner, 1994; Pósfai et al., 2003, 2004; Adachi et al.,
2007; Tumolva et al., 2010). In particular, electron tomog-
raphy (van Poppel et al., 2005) is a promising technique
for identifying three-dimensional structures of nanoparticles.
Although microscopy techniques are the only available meth-
ods that directly target particle morphology, their application
for routine monitoring purposes is strongly limited due to
labor-intensive sample preparation and data analysis. How-
ever, these limitations are reduced to a large extent by recent
computer-controlled image processing approaches, enabling
the automatic characterization of the morphology of thou-
sands of particles deposited on a filter.

3.7 Limitations due to particle size

For many methods, the lower limit of detectable particle size
must be considered since carbonaceous particles may be as
small as 10 nm diameter or less, depending on their origin.
Methods measuring volume properties, such as in situ light
absorption techniques or LII, are not affected by a lower
limit of detectable size because they do not refer to single-
particle properties. For techniques based on the analysis of
particle-loaded filters, the lower size limit is determined by
the sampling efficiency of the selected filter material; see,
e.g., Hinds (1999) for details. For single-particle methods
like SP2, SP-AMS or electron microscopy methods, how-
ever, this limitation can become a serious constraint. In par-
ticular, the single-particle SP2 method can only detect parti-
cles larger than 70–80 nm diameter (Schwarz et al., 2010),
a limitation that may also be an issue for the related SP-
AMS method (Onasch et al., 2012), while microscopy-based
methods can characterize particles as small as 10 nm diame-
ter (Tumolva et al., 2010).

4 Historic and current terminology

As stated in the WMO/GAW Report 153 on Aerosol Mea-
surement Procedures (Baltensperger et al., 2003), carbona-
ceous species are the least understood and most difficult to
characterize of all aerosol chemical components. As a first
step, total aerosol carbon mass (TC) can be divided into three
fractions: inorganic carbonates (IC), organic carbon (OC),
and a third fraction called variously elemental carbon, black
carbon, soot, or refractory carbon. In climate change and
air quality research, the latter fraction of the carbonaceous
aerosol is commonly addressed as black carbon (BC), but is
often assumed to be elemental carbon (EC). It is also loosely
termed soot even though soot denotes the ensemble of the
particles emitted during incomplete combustion, i.e., the sum
of black carbon and organic carbon (OC, see below).
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4.1 Historic definition

In 1978, the first Conference on Carbonaceous Particles in
the Atmosphere was held in Berkeley, California, USA. At
this conference, the first methods for the measurement of
carbonaceous aerosols were presented and the link between
strong light absorption by aerosol particles in the visible
spectral range and their carbonaceous matter content was es-
tablished (Rosen et al., 1978a, b; Weiss et al., 1978). The
former article (Rosen et al., 1978a), which led to the develop-
ment of the continuous, filter-based absorption photometers,
compared Raman spectra and the optical “absorption” mea-
surement of “graphitic soot”. The first mention of the optical
determination of “black carbon” came in an article that com-
pared thermal methods and the optical transmission method
(Gundel et al., 1981). It states in the first paragraph “The term
‘black carbon’ is used in this paper to refer to the optically
absorbing carbonaceous component of ambient and source
aerosols.”

Based on the pioneering work of Novakov (1984), Gold-
berg (1985) and Shah and Rau (1990), the following analyti-
cally based definitions have been introduced since then:

– Total carbon (TC): total particulate carbonaceous ma-
terial (Novakov, 1984); commonly assumed as TC=

EC + OC (Shah and Rau, 1990), often neglecting inor-
ganic carbon.

– Organic carbon (OC): any of the vast number of com-
pounds where carbon is chemically combined with hy-
drogen and other elements like O, S, N, P, Cl, etc. (Shah
and Rau, 1990).

– Elemental carbon (EC): a form of carbon that is essen-
tially pure carbon rather than being chemically com-
bined with hydrogen and/or oxygen. It can exist either
in an amorphous or crystalline structure (Shah and Rau,
1990).

– Carbonate carbon (CC) or inorganic carbon (IC): inor-
ganic carbonate salts (Shah and Rau, 1990).

– Black carbon (BC): combustion-produced black par-
ticulate carbon having a graphite-like microstructure
(Novakov, 1984), or “an impure form of the element
[carbon] produced by the incomplete combustion of
fossil fuels and biomass. It contains over 60 % carbon
[by mass] with the major accessory elements hydrogen,
oxygen, nitrogen, and sulfur” (Goldberg, 1985).

From a source-based approach the following definitions
were made:

– Primary carbon: particulate carbon produced in sources,
rather than in the atmosphere, being the sum of primary
organic species and black carbon (Novakov, 1984).

– Secondary carbon: organic particulate carbon formed
by atmospheric reactions from gaseous precursors (No-
vakov, 1984). In current literature this fraction is re-
ferred to as secondary organic aerosol (SOA).

– Soot: synonymous with primary carbon derived from
combustion (Novakov, 1984), or a common name for
elemental carbon (Shah and Rau, 1990).

From these historic definitions it is evident that there is
no unambiguous separation line between the definitions for
elemental carbon, black carbon and soot. Rather, these terms
are commonly, but incorrectly, used synonymously.

4.2 Current terminology

More precise and operational definitions have been devel-
oped with improvements in understanding and measurement
capabilities. An in-depth discussion of these issues can be
found in the papers by Bond et al. (2006, 2013), Andreae and
Gelencśer (2006), and in interactive comments to Buseck et
al. (2012); see Schwartz and Lewis (2012), Prather (2012),
Gysel (2012) and published reviews:

– “Soot carbon” or “Soot” (Csoot): particles containing
carbon with the morphological and chemical properties
typical of soot particles from fossil fuel combustion.
Soot carbon particles are formed from agglomerates of
spherules composed of graphite-like microcrystallites.
They consist almost exclusively of carbon, with minor
amounts of hydrogen and oxygen (Ogren and Charlson,
1983; Andreae and Gelencsér, 2006) and are character-
ized by a surface area well above 10 m2 g−1 with max-
imum values≥ 100 m2 g−1, depending on the combus-
tion source (e.g., Gilot et al., 1993; Popovitcheva et al.,
2000; Kandas et al., 2005). Note that this definition ex-
cludes any organic species that might be present as a
coating on the spherules.

– Graphitic carbon: particulate carbon having a graphite-
like microstructure characterized by sp2-bonded carbon
atoms (Ogren and Charlson, 1983). Graphitic carbon is
often used as another term for EC (Shah and Rau, 1990).

– Ns-soot: from the viewpoint of particle morphology, the
term “ns-soot” was introduced, which refers to the car-
bon nanospheres as the constituting element of typi-
cal combustion particle aggregates (Buseck et al., 2012;
Adachi and Buseck, 2013). This definition is linked to
the various methods of electron microscopy.

– Elemental carbon (EC): carbonaceous fraction of par-
ticulate matter that is thermally stable in an inert atmo-
sphere to high temperatures near 4000 K and can only
be gasified by oxidation starting at temperatures above
340◦C. It is assumed to be inert and nonvolatile un-
der atmospheric conditions and insoluble in any solvent
(Ogren and Charlson, 1983).

www.atmos-chem-phys.net/13/8365/2013/ Atmos. Chem. Phys., 13, 8365–8379, 2013



8372 A. Petzold et al.: Recommendations for reporting “black carbon” measurements

– Black carbon (BC): following Bond et al. (2013), who
deserve credit for synthesizing BC definitions for the
first time, BC is characterized by the following distinct
properties: (1) it strongly absorbs visible light, with a
MAC value above 5 m2 g−1 at a wavelengthλ = 550 nm
for freshly produced particles; (2) it is refractory, with a
volatilization temperature near 4000 K; (3) it is insolu-
ble in water, in organic solvents including methanol and
acetone, and in the other components of the atmospheric
aerosol; and (4) it consists of aggregates of small carbon
spherules of< 10 nm to approximately 50 nm in diame-
ter. In order to include a distinct microstructural feature,
we add a fifth property saying that (5) it contains a high
fraction of graphite-like sp2-bonded carbon atoms; see
Table 1 for a compilation of properties.

– Refractory black carbon (rBC): carbonaceous fraction
of particulate matter that is insoluble and vaporizes only
at temperatures near 4000 K (Schwarz et al., 2010).

With respect to light-absorbing properties of carbonaceous
aerosols, the following definitions have been introduced:

– Light-absorbing carbon (LAC): carbon fraction of the
atmospheric aerosol that strongly absorbs light in the
visible spectral region (Andreae and Gelencsér, 2006;
Bond and Bergstrom, 2006).

– Brown carbon (BrC): light-absorbing organic matter in
atmospheric aerosols of various origins, e.g., soil humic
substances, humic-like substances (HULIS) (Graber
and Rudich, 2006), tarry materials from combustion,
bioaerosols, etc. (Ṕosfai et al., 2004; Andreae and
Gelencśer, 2006), which tend to appear brown rather
than black. The brownish appearance is associated with
a nonuniform absorption over the entire visible wave-
length range, i.e., increasing absorption with decreasing
wavelength in the visible range of the solar spectrum.

4.3 Limitations of current terminology

Currently used terminology exhibits distinct ambiguities
and limitations. The term “black carbon” implies optical
properties and composition similar to soot carbon or light-
absorbing carbon (LAC, which includes Csoot and BrC), and
particle morphology similar to ns-soot. The word “black” has
also come to be associated with measurements by filter-based
optical methods, which frequently assume a particular wave-
length dependence and absorption per unit mass (Liousse et
al., 1993; Petzold et al., 1997; Jeong et al., 2004). More-
over, the term “black” is associated with the efficient ab-
sorption of light over the entire visible wavelength range,
with the imaginary part of the refractive index being almost
wavelength-independent over the visible and near-infrared
spectral range. However, in the climate-science community,
BC is the most commonly used term, without consideration
of its unclear definition.

The term “elemental carbon” is not necessarily an accurate
description of what is actually measured (Andreae and Ge-
lencśer, 2006; Bond and Bergstrom, 2006) because the name
implies a near-elemental composition of the carbon. In re-
ality, EC determined by evolved carbon methods from atmo-
spheric aerosol samples still contains some carbon with func-
tional groups (e.g., C–O) and the molar H/C ratio determined
for black carbon in ash is about 0.20 (Kuhlbusch, 1995). Fol-
lowing this concern, Andreae and Gelencsér (2006) proposed
the use of “apparent elemental carbon” (ECa) as the proper
terminology for the fraction of carbon that is oxidized above
a certain temperature threshold in the presence of an oxygen
containing atmosphere. However, the term “elemental car-
bon” is well established in a wide range of literature focusing
on combustion methods and emission inventories. In addi-
tion, it is widely used within official bodies as CEN, ISO, as
well as NIOSH and operationally defined in all the thermal
protocols included in respective standards. Finally, the term
“elemental carbon” is used in legislation related to ambient
air quality and workplace safety.

5 Recommended terminology and related measurement
methods

In consideration of the inadequate definitions available in the
literature, and in order to overcome this unsatisfying situa-
tion, we propose the following consistent terminology that is
built along the line of targeted material properties. Table 2
summarizes the recommended terminology and includes re-
lated measurement methods and specific instruments. Re-
porting procedures for the World Data Centre for Aerosols
are found athttp://www.gaw-wdca.org/.

Total carbon (TC) mass is used to describe the mass of all
carbonaceous matter in airborne particles.

Total carbon mass is a well-defined property that
can be measured with precision better than 10 % by
evolved carbon methods.

Black carbon (BC) is a useful qualitative descrip-
tion when referring to light-absorbing carbonaceous sub-
stances in atmospheric aerosol; however, for quantita-
tive applications the term requires clarification of the
underlying determination.

In the absence of a method for uniquely determining the
mass of BC, the authors recommend that the term “BC”
should be used as a qualitative and descriptive term when
referring generally to material that shares some of the char-
acteristics of BC (see Table 1), in particular its carbonaceous
composition combined with its light-absorbing properties.
“BC” is already used this way in atmospheric modeling and
assessment studies. For quantitative applications like report-
ing data from observations or building inventories, we sug-
gest using more specific terminology that refers to the partic-
ular measurement method as defined in the following. One
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Table 2.Recommended terminology and related measurement techniques and instruments.

Property Technique Instrument Reference Reported value Recommendation

Light absorption Light absorption
measurement

various in-situ and
filter-based methods
Photoacoustic Spec.
Aethalometer
MAAP

PSAP

COSMOS

Sheridan et al. (2005);
Moosm̈uller et al. (2009)
Arnott et al. (2003)
Hansen et al. (1984)
Petzold and Scḧonlinner (2004);
Petzold et al. (2005)
Bond et al. (1999); Virkkula et
al. (2005)
Miyazaki et al. (2008)

Light absorption coefficientσap; mass
concentration computed fromσap by
applying a specific mass absorption
cross-section MAC

report asσap;
if reported as EBC, specify MAC value
used for the conversion from light ab-
sorption into mass concentration

Refractory Measurement of thermal
radiation

Soot Particle Aerosol Mass Spec-
trometry

SP2

LII

SP-AMS

Stephens et al. (2003); Schwarz et
al. (2006); Kondo et al. (2011)
Snelling et al. (2005); Chan et al. (2011)

Onasch et al. (2012)

Mass concentration

Mass concentration
OC/rBC mass fraction

report as rBC
specify means of calibration, conver-
sion factor from thermal radiation to
carbon mass, and the size-cut of rBC
particles
report as rBC

Chemical
composition,
carbon content

Evolved carbon methods, thermal
evolution of carbon, with optical
correction for pyrolysis

various temperature
protocols

IMPROVE Chow et al. (1993)
IMPROVE A, NIOSH Peterson and
Richards (2002); Chow et al. (2007a)
EUSAAR-2 Cavalli et al. (2010)

Mass concentration
OC/EC mass fraction

report as EC;
specify temperature protocol used for
the sample analysis

Aerosol Time-of Flight Mass Spec-
trometry
Soot Particle Aerosol Mass Spec-
trometry

ATOFMS

SP-AMS

Spencer and Prather (2006)

Onasch et al. (2012)

Mass concentration
OC/EC mass fraction
Mass concentration
OC/rBC mass fraction

report as EC

report as rBC, because technique de-
tects carbon that is evaporating under
incandescent conditions

Graphite-like
microstructure

Raman spectroscopy Sze et al. (2001); Mertes et al. (2004);
Sadezky et al. (2005);
Ivleva et al. (2007)

Mass concentration report as EC,
specify means of calibration

Particle
morphology

Electron microscopy TEM van Poppel et al. (2005);
Tumolva et al. (2010)

Structural information not applicable

strong recommendation, however, is to avoid using the term
“BC” for evolved carbon methods.

Equivalent black carbon (EBC) should be used instead of
black carbon for data derived from optical absorption meth-
ods, together with a suitable MAC for the conversion of light
absorption coefficient into mass concentration.

In the absence of a standard reference material, it is rec-
ommended to report such measurements as aerosol light ab-
sorption coefficient, thus avoiding the additional uncertainty
introduced by assuming a MAC value. When reporting EBC,
i.e., mass concentration, it is crucial to identify the MAC
value used for the conversion and to specify the approach
used for separating potential contributions of BrC or mineral
dust to the aerosol light absorption coefficient.

Elemental carbon (EC) should be used instead of black
carbon for data derived from methods that are specific to the
carbon content of carbonaceous matter.

It is recommended to report data from evolved carbon
methods and aerosol mass spectrometry methods as EC. Ad-
ditionally, data from Raman spectroscopy, which addresses
the graphite-like structure of carbon atoms, should be re-
ported as EC. Data from any future methods that address the
amount of carbon atoms contained in the analyzed sample of
particulate matter should also be reported as EC.

Refractory black carbon (rBC) should be used in-
stead of black carbon for measurements derived from
incandescence methods.

For methods based on laser-induced incandescence, like
LII, SP2 and SP-AMS, it is recommended to report data as
refractory black carbon, rBC, since these methods mainly ad-
dress the thermal stability of the carbonaceous matter and re-
quire light-absorbing efficiency of the analyzed particulate

matter. Terminology used so far (e.g., refractory BC, rBC,
equivalent refractory BC, erBC, and similar terms contain-
ing EC or refractory carbon, RC) should be replaced by the
term rBC.

Soot is a useful qualitative description when referring to
carbonaceous particles formed from incomplete combustion.

The term soot generally refers to the source mechanism of
incomplete combustion of hydrocarbon fuels (Glassman and
Yetter, 2008) rather than to a material property. It is widely
used in research on the formation of carbonaceous particles
in combustion processes, and on the emission of particulate
matter from combustion sources as well as in the field of
particulate matter-related health effects. Thus, terming par-
ticles emitted from a combustion source as soot particles is
in agreement with the recommended terminology.

Mixed particles containing a BC fraction should be
termed BC-containing particles instead of BC particles
or soot particles.

Since atmospheric research usually addresses mixed and
aged particles that can no longer be associated with any com-
bustion source process, the recommendation is to avoid using
the terms soot or BC particle for atmospheric aerosol. It is
also recommended to refer to the BC components of indi-
vidual particles as the BC cores without any confusion about
non-BC mass either internally or externally mixed with the
BC. Reported BC fractions of particle mass should be con-
sistently referred to as rBC, EC, or EBC fractions, depending
on the measurement technique.

With the above recommendations almost all currently
known needs for unambiguous terminology of black car-
bon related research should be covered. As a consequence
we recommend terminating the use of other terms that have
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been applied in the past. In order to support the efforts to-
wards consistent reporting of BC-related measurements, the
authors of future research papers are requested to clearly
state means of calibration and conversion as metadata with
any published values.

6 Conclusions

Despite the huge efforts undertaken in the research field of
carbonaceous particles in the atmosphere, the research com-
munity is still not and may never be in a position to of-
fer unambiguous conversion relationships between BC data
originating from different methods and different aerosol
types. Methods are associated with distinct particle proper-
ties, which may depend not only on particle chemical com-
position but also on physical properties like particle size or
mixing state. These complex interdependencies very likely
inhibit universal quantitative one-to-one conversion relation-
ships between properties.

After having critically reviewed the currently used termi-
nology and after having considered the use of terms not only
in the research area of atmospheric composition, air quality
and climate change but also in legislation on air quality con-
trol and work place safety, we propose a terminology that
reflects the widespread origin of BC data and permits a con-
sistent reporting of data in the scientific literature that were
generated by similar methods.
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G. Močnik, and O. Popovicheva are acknowledged as well.

The service charges for this open access publication
have been covered by a Research Centre of the
Helmholtz Association.

Edited by: N. M. Donahue

References

Adachi, K. and Buseck, P. R.: Changes of ns-soot mixing states and
shapes in an urban area during CalNex, J. Geophys. Res. Atmos.,
118, doi:10.1002/jgrd.50321, 2013.

Adachi, K., Chung, S. H., Friedrich, H., and Buseck, P. R.: Frac-
tal parameters of individual soot particles determined using elec-
tron tomography: Implications for optical properties, J. Geophys.
Res., 112, D14202, doi:10.1029/2006jd008296, 2007.

Adler, G., Riziq, A. A., Erlick, C., and Rudich, Y.: Effect of intrin-
sic organic carbon on the optical properties of fresh diesel soot,
PNAS, 107, 6699–6704, doi:10.1073/pnas.0903311106, 2010.

Andreae, M. O. and Gelencsér, A.: Black carbon or brown car-
bon? The nature of light-absorbing carbonaceous aerosols, At-
mos. Chem. Phys., 6, 3131–3148, doi:10.5194/acp-6-3131-2006,
2006.

Arnott, W. P., Moosm̈uller, H., Rogers, C. F., Jin, T. F., and Bruch,
R.: Photoacoustic spectrometer for measuring light absorption
by aerosol: instrument description, Atmos. Environ., 33, 2845–
2852, 1999.

Arnott, W. P., Moosm̈uller, H., Sheridan, P. J., Ogren, J. A.,
Raspet, R., Slaton, W. V., Hand, J. L., Kreidenweis, S. M.,
and Collett, J. L. J.: Photoacoustic and filter-based ambient
aerosol light absorption measurements: Instrument comparisons
and the role of relative humidity, J. Geophys. Res., 108, 4034,
doi:10.1029/2002JD002165, 2003.

Arnott, W. P., Walker, J. W., Moosm̈uller, H., Elleman, R. A., Jon-
sson, H. H., Buzorius, G., Conant, W. C., Flagan, R. C., and Se-
infeld, J. H.: Photoacoustic insight for aerosol light absorption
aloft from meteorological aircraft and comparison with particle
soot absorption photometer measurements: DOE Southern Great
Plains climate research facility and the coastal stratocumulus im-
posed perturbation experiments, J. Geophys. Res., 111, D05S02,
doi:10.1029/2005jd005964, 2006.
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Petzold, A. and Scḧonlinner, M.: Multi-angle absorption photome-
try - A new method for the measurement of aerosol light absorp-
tion and atmospheric black carbon, J. Aerosol Sci., 35, 421–441,
2004.

Petzold, A., Kopp, C., and Niessner, R.: The dependence of the spe-
cific attenuation cross-section on black carbon mass fraction and
particle size, Atmos. Environ., 31, 661–672, 1997.

Petzold, A., Schl̈osser, H., Sheridan, P. J., Arnott, W. P., Ogren,
J. A., and Virkkula, A.: Evaluation of multiangle absorption
photometry for measuring aerosol light absorption, Aerosol Sci.
Technol., 39, 40–51, 2005.

Petzold, A., Rasp, K., Weinzierl, B., Esselborn, M., Hamburger, T.,
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Pósfai, M., Simonics, R., Li, J., Hobbs, P. V., and Buseck,
P. R.: Individual aerosol particles from biomass burning
in southern Africa: 1. Compositions and size distributions
of carbonaceous particles, J. Geophys. Res., 108, 8483,
doi:10.1029/2002jd002291, 2003.
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